深入以太坊智能合约开发(深入以太坊智能合约开发PDF)

科灵网 43 0

002:以太坊简介|《ETH原理与智能合约开发》笔记

待字闺中开发了一门区块链方面的课程:《深入浅出ETH原理与智能合约开发》,马良老师讲授。此文集记录我的学习笔记。

课程共8节课。其中,前四课讲ETH原理,后四课讲智能合约。

第一课分为四部分:

这篇文章是第一部分的学习笔记:以太坊简介。

以太坊是目前公认的区块链2.0,相比于区块链1.0(比特币),其最大的特点是引入了智能合约,从而从单一的数字加密 Token 技术转化为一个区块链分布式应用的平台。以太坊本身不包含任何具体的应用,它主要是提供基础平台和工具,使得开发者可以在其基础之上开发出各种各样的应用。可以说,以太坊有着巨大的潜力,它最终可能会发展出分布式、自动化、自组织的最高形态。

第一,我们可以通过学习以太坊的技术,领会区块链技术发展的脉络,改进的思路/路径,从而紧跟区块链技术发展的前沿,预测下一步的趋势。

第二,DAPP(分布式应用)生态系统目前的发展也是蒸蒸日上,蓬勃发展,据不完全统计,现在有数百种应用之多,显而易见的,对于开发人员的需求也是水涨船高,需要大量的开发人员。目前非常有名的应用有加密猫、各类侧链应用、ERC20 Token如币安币火币等等。

2013年,创始人 Vitalik Buterin 针对比特币存在的一些问题以及局限性,提出把“智能合约”构想应用于区块链领域,希望打造一个基于区块链的多方计算的智能化通用平台,并通过比特币融资进行开发。

2014年,以太坊基金会在瑞士成立,管理并运营整个项目。

前5大矿池占83%的算力,很集中。

目前大约有16000个全节点,其中,美国5461(34%),中国1839(11.5%),俄罗斯963(6%),德国920(5.7%),加拿大875(5.45%)。全节点每天都有动态变化。分布情况也反映出各个国家的参与热度。

深入以太坊智能合约开发(深入以太坊智能合约开发PDF)-第1张图片-科灵网

用Go来做以太坊开发④智能合约

在这个章节中我们会介绍如何用Go来编译,部署,写入和读取智能合约。

与智能合约交互,我们要先生成相应智能合约的应用二进制接口ABI(application binary interface),并把ABI编译成我们可以在Go应用中调用的格式。

第一步是安装 Solidity编译器 ( solc ).

Solc 在Ubuntu上有snapcraft包。

Solc在macOS上有Homebrew的包。

其他的平台或者从源码编译的教程请查阅官方solidity文档 install guide .

我们还得安装一个叫 abigen 的工具,来从solidity智能合约生成ABI。

假设您已经在计算机上设置了Go,只需运行以下命令即可安装 abigen 工具。

我们将创建一个简单的智能合约来测试。 学习更复杂的智能合约,或者智能合约的开发的内容则超出了本书的范围。 我强烈建议您查看 truffle framework 来学习开发和测试智能合约。

这里只是一个简单的合约,就是一个键/值存储,只有一个外部方法来设置任何人的键/值对。 我们还在设置值后添加了要发出的事件。

虽然这个智能合约很简单,但它将适用于这个例子。

现在我们可以从一个solidity文件生成ABI。

它会将其写入名为“Store_sol_Store.abi”的文件中

现在让我们用 abigen 将ABI转换为我们可以导入的Go文件。 这个新文件将包含我们可以用来与Go应用程序中的智能合约进行交互的所有可用方法。

为了从Go部署智能合约,我们还需要将solidity智能合约编译为EVM字节码。 EVM字节码将在事务的数据字段中发送。 在Go文件上生成部署方法需要bin文件。

现在我们编译Go合约文件,其中包括deploy方法,因为我们包含了bin文件。

在接下来的课程中,我们将学习如何部署智能合约,然后与之交互。

Commands

Store.sol

solc version used for these examples

如果你还没看之前的章节,请先学习 编译智能合约的章节 因为这节内容,需要先了解如何将智能合约编译为Go文件。

假设你已经导入从 abigen 生成的新创建的Go包文件,并设置ethclient,加载您的私钥,下一步是创建一个有配置密匙的交易发送器(tansactor)。 首先从go-ethereum导入 accounts/abi/bind 包,然后调用传入私钥的 NewKeyedTransactor 。 然后设置通常的属性,如nonce,燃气价格,燃气上线限制和ETH值。

如果你还记得上个章节的内容, 我们创建了一个非常简单的“Store”合约,用于设置和存储键/值对。 生成的Go合约文件提供了部署方法。 部署方法名称始终以单词 Deploy 开头,后跟合约名称,在本例中为 Store 。

deploy函数接受有密匙的事务处理器,ethclient,以及智能合约构造函数可能接受的任何输入参数。我们测试的智能合约接受一个版本号的字符串参数。 此函数将返回新部署的合约地址,事务对象,我们可以交互的合约实例,还有错误(如果有)。

就这么简单:)你可以用事务哈希来在Etherscan上查询合约的部署状态:

Commands

Store.sol

contract_deploy.go

solc version used for these examples

这写章节需要了解如何将智能合约的ABI编译成Go的合约文件。如果你还没看, 前先读 上一个章节 。

一旦使用 abigen 工具将智能合约的ABI编译为Go包,下一步就是调用“New”方法,其格式为“Newcontractname style="box-sizing: border-box; font-size: 16px; -ms-text-size-adjust: auto; -webkit-tap-highlight-color: transparent;"”,所以在我们的例子中如果你 回想一下它将是 NewStore 。 此初始化方法接收智能合约的地址,并返回可以开始与之交互的合约实例。/contractname

Commands

Store.sol

contract_load.go

solc version used for these examples

这写章节需要了解如何将智能合约的ABI编译成Go的合约文件。如果你还没看, 前先读 上一个章节 。

在上个章节我们学习了如何在Go应用程序中初始化合约实例。 现在我们将使用新合约实例提供的方法来阅读智能合约。 如果你还记得我们在部署过程中设置的合约中有一个名为 version 的全局变量。 因为它是公开的,这意味着它们将成为我们自动创建的getter函数。 常量和view函数也接受 bind.CallOpts 作为第一个参数。了解可用的具体选项要看相应类的 文档 一般情况下我们可以用 nil 。

Commands

Store.sol

contract_read.go

solc version used for these examples

这写章节需要了解如何将智能合约的ABI编译成Go的合约文件。如果你还没看, 前先读 上一个章节 。

写入智能合约需要我们用私钥来对交易事务进行签名。

我们还需要先查到nonce和燃气价格。

接下来,我们创建一个新的keyed transactor,它接收私钥。

然后我们需要设置keyed transactor的标准交易选项。

现在我们加载一个智能合约的实例。如果你还记得 上个章节 我们创建一个名为 Store 的合约,并使用 abigen 工具生成一个Go文件。 要初始化它,我们只需调用合约包的 New 方法,并提供智能合约地址和ethclient,它返回我们可以使用的合约实例。

我们创建的智能合约有一个名为 SetItem 的外部方法,它接受solidity“bytes32”格式的两个参数(key,value)。 这意味着Go合约包要求我们传递一个长度为32个字节的字节数组。 调用 SetItem 方法需要我们传递我们之前创建的 auth 对象(keyed transactor)。 在幕后,此方法将使用它的参数对此函数调用进行编码,将其设置为事务的 data 属性,并使用私钥对其进行签名。 结果将是一个已签名的事务对象。

现在我就可以看到交易已经成功被发送到了以太坊网络了:

要验证键/值是否已设置,我们可以读取智能合约中的值。

搞定!

Commands

Store.sol

contract_write.go

solc version used for these examples

有时您需要读取已部署的智能合约的字节码。 由于所有智能合约字节码都存在于区块链中,因此我们可以轻松获取它。

首先设置客户端和要读取的字节码的智能合约地址。

现在你需要调用客户端的 codeAt 方法。 codeAt 方法接受智能合约地址和可选的块编号,并以字节格式返回字节码。

你也可以在etherscan上查询16进制格式的字节码

contract_bytecode.go

首先创建一个ERC20智能合约interface。 这只是与您可以调用的函数的函数定义的契约。

然后将interface智能合约编译为JSON ABI,并使用 abigen 从ABI创建Go包。

假设我们已经像往常一样设置了以太坊客户端,我们现在可以将新的 token 包导入我们的应用程序并实例化它。这个例子里我们用 Golem 代币的地址.

我们现在可以调用任何ERC20的方法。 例如,我们可以查询用户的代币余额。

我们还可以读ERC20智能合约的公共变量。

我们可以做一些简单的数学运算将余额转换为可读的十进制格式。

同样的信息也可以在etherscan上查询:

Commands

erc20.sol

contract_read_erc20.go

solc version used for these examples

以太坊智能合约开发:让合约接受转账

在以太坊智能合约开发中,通常会有向合约地址进行转账的需求,那么有几种向合约地址进行转账的方式呢?

有三种方式:

部署合约时转账

调用合约提供的方法

直接向合约地址进行转账

但有一个问题,以太坊的智能合约默认是拒绝来自任何地址的转账,那么如何让合约能够支持接收转账呢?

1、部署转账

在进行合约开发时,如果想要在部署时,直接向该合约进行转账,只需要给构造函数中添加payable修饰符。

示例:

2、执行合约转账

执行合约转账,则需要给你需要支持转账功能的方法添加payable修饰符

示例:

3、直接转账

支持直接转账,需要借助后备函数(fallback function),只需要为后备函数添加 payable 修饰符

示例:

以太坊智能合约是什么

以太坊是一个分布式的计算平台。它会生成一个名为Ether的加密货币。程序员可以在以太坊区块链上写下“智能合约”,这些以太坊智能合约会根据代码自动执行。

以太坊是什么?

以太坊经常与比特币相提并论,但情况却有所不同。比特币是一种加密货币和分布式支付网络,允许比特币在用户之间转移。

相关:什么是比特币?它是如何工作的?

以太坊项目有更大的目标。正如Ethereum网站所说,“以太坊是一个运行智能合约的分布式平台”。这些智能合约运行在“以太坊虚拟机”上,这是一个由所有运行以太网节点的设备组成的分布式计算网络。

“分布式平台”部分意味着任何人都可以建立并运行以太坊节点,就像任何人都可以运行比特币节点一样。任何想要在节点上运行“智能合约”的人都必须向Ether中的这些节点的运营商付款,这是一个与以太坊相关的加密货币。因此,运行以太网节点的人提供计算能力,并在以太网中获得支付,这与运行比特币节点的人提供哈希能力并以比特币支付的方式类似。

换句话说,虽然比特币仅仅是一个区块链和支付网络,但以太坊是一个分布式计算网络,其区块链可以用于许多其他事情。以太坊白皮书中提供了详细信息。

以太是什么?

以太网是与以太坊区块链相关的数字标记(或者说就是加密货币)。换句话说,以太是代币,以太坊是平台。但是,现在人们经常交替使用这些术语。例如,Coinbase允许你购买以太坊代币(Ethereum),即代表以太币代币。

这在技术上就是“altcoin”,这实际上意味着一个非比特币加密货币。和比特币一样,Ether也受到分布式区块链支持 - 在这种情况下是以太坊区块链。

想要在以太坊区块链上创建应用程序或以太坊 智能合约的开发人员需要以太网代币来支付节点来托管它,而基于以太坊的应用程序的用户可能需要以太网来支付这些应用程序中的服务费用。人们也可以在以太坊网络之外销售服务,并接受以太网支付,或者可以在交易所以现金形式出售以太币代币 - 就像比特币一样

006:MPT与RLP|《ETH原理与智能合约开发》笔记

待字闺中开发了一门区块链方面的课程:《深入浅出ETH原理与智能合约开发》,马良老师讲授。此文集记录我的学习笔记。

课程共8节课。其中,前四课讲ETH原理,后四课讲智能合约。

第二课分为三部分:

这篇文章是第二课第二部分的学习笔记:MPT与RLP。

MPT,Merkle Patricia Tree,结合了Merkle Tree(默克尔树)和 Patricia Tree(帕特里夏树)的一种数据结构。

RLP,Recursive Length Prefix,一种编码方法。

这是两个非常重要的数据结构,在以太坊的区块和交易中都有用到。

先分别介绍一下Merkle Tree 和 Patricia Tree。

Merkle Tree 和 Patricia Tree Merkle Tree 和 Patricia Tree

默克尔树的解释:对每一个交易计算其散列值(Hash),再对两个散列值求他们的散列值。如果是奇数个,就把最后一个重复一次。最后得到的一个散列值就是默克尔树根的值。如图,交易1、1、2、3的散列值分别是HASH0、HASH1、HASH2、HASH3。HASH0和HASH1结合在一起计算散列值得HASH01,HASH2和HASH3结合在一起计算散列值得HASH23,接下来HASH01、HASH23结合在一起,计算散列值得HASH0123。

采用默克尔树的好处是可以方便的判断一个交易是否在区块中。

Patricia Tree,可称为压缩前缀树。如上图右半部分。相同的前缀在同一分支中,后面一同的部分分叉出来,如test和toast,都有相同的t,est和oast在两个分支中。

这个结构的好处是节省空间,因为每一级的键值可以是多个字符。

了解了Merkle Tree 和 Patricia Tree后,再来看这两者混合后的产物——MPT。

这里的原理知识单独来看不易理解,和具体的例子结合起来才更容易理解,此处先放上课件截图。在后面的例子中再做说明。

Merkle Patricia Tree 规格 Merkle Patricia Tree 规格

在MPT中,还涉及到三个小的编码标准。主要规则如图。下面结合两个例子说明一下。

三个编码标准 三个编码标准

HEX编码的例子:从ASCII码表中可以查出,b的十六进制编码为62,o的十六进制编码为6F,F在十六进制中就是15的意思。因为这是个叶子节点,最后加上0x10表示结束,也就是16。所以最后的编码为[6 2 6 15 6 2 16]

HEX-Prefix编码的例子:[6 2 6 15 6 2 16],将其最后的0x10去掉,[6 2 6 15 6 2]。前面补一个四元组,其中(倒数)第0位是区分奇偶信息的,[6 2 6 15 6 2]是偶数位,第0位是0;第1位是区分节点类型的,这是叶子节点,第1位是1。所以这个四元组就是0010是2。“如果输入key的长度是偶数则再添加一个四元组0x0在flag四元组之后。”,所以,最终的前缀是0x20。本例最终的结果,[32 98 111 98],即[0x20, 0x62, 0x6F, 0x62]

下面是综合性的例子,通过它可以很方便地理解前面的理论知识。值得多看几篇,仔细休会。

初始的key-value对为:

其中,中的数据为key的16进制编码。

MPT.jpg MPT.jpg

因为4组数据都有公共的6,所以这个节点的值为6,长度为1,奇数;节点类型:扩展节点;所以前缀就是0001,即1。

这是个扩展节点,它的值是一个Hashvalue,它指向一个分支节点。Hashvalue,具体指的是分支节点RLP编码的结果的散列值。(RLP见下小节)

分支节点。上面4组数据的第2位是4和8两种情况。在4的位置上存的是下面的扩展节点的散列值,在8的位置上存的是下面的叶子节点的散列值。

叶子节点。以68开头的只有一个了。所以这个节点上的四元组就是6f727365了。它是偶数位。前缀是0x20(同前文HEX-Prefix编码的例子)。这个叶子节点的value值为'stallion'。

扩展节点。在64之后,公共的部分是6f,这个扩展节点的key即为6f,前缀为0000,即00。这个扩展节点的value存放的是一个hashvalue,指向下一个节点,一个分支节点。

分支节点。646f已经表达完,这个节点的value值就是646f对应的值,'verb'。

除此之外,646f之后就是6,所以在这个分支节点的6位置上有一个散列值,指向下一个节点。

扩展节点。在646f6之后,公共的部分是7,其长度为1,奇数。所以前缀为0001。这个节点的value是一个散列值,指向下一个节点。

分支节点。646f67已经表达完,这个节点的value值就是646f67对应的值,'puppy'。

除此之外,646f67之后就是6,所以在这个分支节点的6位置上有一个散列值,指向下一个节点。

叶子节点。key为5,value为'coin'。长度为1,奇数,前缀0011,即3。

整个分析过程结束。可结合上图和前文的理论多加复习。

这小节也是理论性较强,通过例子可以方便理解。先放上课件,再根据我的理解举更多的例子。同样,学习方法也是理论和例子配合学习。其中,list的例子在下篇文章的上机实验部分再列举。 RLP的编码标准 RLP的编码标准 再举几个例子 再举几个例子

区块链和智能合约,以太坊开发,183位开发者整理,知识体系汇总

在以太坊上开发应用程序的可用工具、组件、模式和平台的指南。

此列表的创建是由 ConsenSys 的产品经理推动的,他们认为需要在新的和有经验的区块链开发人员之间更好地共享工具、开发模式和组件。

开发智能合约

智能合约语言

构架

IDE

其他工具

测试区块链网络

测试以太水龙头

前端以太坊 API

后端以太坊 API

引导程序/开箱即用工具

以太坊 ABI(应用程序二进制接口)工具

以太坊客户端

贮存

Mahuta - 具有附加搜索功能的 IPFS 存储服务,以前称为 IPFS-Store

OrbitDB - IPFS 之上的去中心化数据库

JS IPFS API - IPFS HTTP API 的客户端库,用 JavaScript 实现

TEMPORAL - 易于使用的 API 到 IPFS 和其他分布式/去中心化存储协议

PINATA - 使用 IPFS 的最简单方法

消息传递

测试工具

安全工具

监控

其他杂项工具

Cheshire - CryptoKitties API 和智能合约的本地沙箱实现,可作为 Truffle Box 使用

ERCs-以太坊评论请求存储库

ERC-20 - 可替代资产的原始令牌合约

ERC-721 - 不可替代资产的令牌标准

ERC-777 - 可替代资产的改进令牌标准

ERC-918 - 可开采令牌标准

流行的智能合约库

可扩展性

支付/状态通道

等离子体

侧链

POA桥

POA 桥用户界面

POA 桥梁合同

ZK-SNARK

ZK-STARK

预构建的 UI 组件

以上内容,来自git库:

github.com/ConsenSys/ethereum-developer-tools-list

我是鱼歌,一个在深圳创业的全栈程序员,主攻区块链,元宇宙和智能合约,附加小程序和app开发。

[祈祷]

上述文章就是科灵网介绍的深入以太坊智能合约开发和深入以太坊智能合约开发PDF的详细回答,希望能够帮助到大家;如果你还想了解更多财经资讯知识,记得收藏关注我们。

标签: 深入以太坊智能合约开发

抱歉,评论功能暂时关闭!

微信号已复制,请打开微信添加咨询详情!