一、Docker
1.什么是Docker?
- Docker 是一个开源的应用容器引擎,Docker 的容器技术可以在一台主机上轻松为任何应用创建一个轻量级的,可移植的,自给自足的容器。
2.Docker的应用场景有哪些?
- Web 应用的自动化打包和发布。
- 自动化测试和持续集成、发布。
- 在服务型环境中部署和调整数据库或其他的后台应用。
- 从头编译或者扩展现有的 OpenShift 或 Cloud Foundry 平台来搭建自己的 PaaS 环境。
3.Docker的优点有哪些?
容器化越来越受欢迎,Docker的容器有点总结如下:
- 灵活:即使是最复杂的应用也可以集装箱化。
- 轻量级:容器利用并共享主机内核。
- 可互换:可以即时部署更新和升级。
- 便携式:可以在本地构建,部署到云,并在任何地方运行。
- 可扩展:可以增加并白动分发容器副本。
- 可堆叠:可以垂直和即时堆叠服务。
Docker 是一个用于开发,交付和运行应用程序的开放平台。Docker 使您能够将应用程序与基础架构分开,从而可以快速交付软件。借助 Docker,您可以与管理应用程序相同的方式来管理基础架构。通过利用 Docker 的方法来快速交付,测试和部署代码,您可以大大减少编写代码和在生产环境中运行代码之间的延迟。
4.Docker与虚拟机的区别是什么?
虚拟机通过添加Hypervisor层(虚拟化中间层),虚拟出网卡、内存、CPU等虚拟硬件,再在其上建立虚拟机,每个虚拟机都有自己的系统内核。而Docker容器则是通过隔离(namesapce)的方式,将文件系统、进程、设备、网络等资源进行隔离,再对权限、CPU资源等进行控制(cgroup),最终让容器之间互不影响,容器无法影响宿主机。
与虚拟机相比,容器资源损耗要少。同样的宿主机下,能够建立容器的数量要比虚拟机多
但是,虚拟机的安全性要比容器稍好,而docker容器与宿主机共享内核、文件系统等资源,更有可能对其他容器、宿主机产生影响。
5.Docker的三大核心是什么?
镜像
Docker的镜像是创建容器的基础,类似虚拟机的快照,可以理解为一个面向Docker容器引擎的只读模板。
通过镜像启动一个容器,一个镜像是一个可执行的包,其中包括运行应用程序所需要的所有内容包含代码,运行时间,库、环境变量、和配置文件。
Docker镜像也是一个压缩包,只是这个压缩包不只是可执行文件,环境部署脚本,它还包含了完整的操作系统。因为大部分的镜像都是基于某个操作系统来构建,所以很轻松的就可以构建本地和远端一样的环境,这也是Docker镜像的精髓。
容器
Docker的容器是从镜像创建的运行实例,它可以被启动、停止和删除。所创建的每一个容器都是相互隔离、互不可见,以保证平台的安全性。可以把容器看做是一个简易版的linux环境(包括root用户权限、镜像空间、用户空间和网络空间等)和运行在其中的应用程序。
仓库
仓库注册服务器上往往存放着多个仓库,每个仓库中包含了多个镜像,每个镜像有不同标签(tag)。
仓库分为公开仓库(Public)和私有仓库(Private)两种形式。
最大的公开仓库是 Docker Hub:https://hub.docker.com,存放了数量庞大的镜像供用户下载。
国内的公开仓库包括阿里云 、网易云等。
6.如何快速安装Docker?
执行以下安装命令去安装依赖包
[root@centos7 ~]sudo yum install -y yum-utils device-mapper-persistent-data lvm2
[root@centos7 ~] yum install docker-ce docker-ce-cli containerd.io docker-compose-plugin
#安装特定版本
[root@centos7 ~]sudo yum install docker-ce--18.09.1 docker-ce-cli-<VERSION_STRING> containerd.io
[root@centos7 ~]# systemctl enable docker
[root@centos7 ~]# systemctl start docker
[root@centos7 ~]# systemctl status docker
[root@centos7 ~]# docker ps --查看容器
[root@centos7 ~]# docker version --查看版本
[root@centos7 ~]# docker info --查看版本
7.如何修改Docker的存储位置?
默认情况下 Docker的存放位置为:/var/lib/docker
可以通过命令查看具体位置:docker info | grep “Docker Root Dir”
修改到其它目录
首先停掉 Docker 服务:
systemctl stop docker
然后移动整个/var/lib/docker 目录到目的路径
mkdir -p /root/data/docker
mv /var/lib/docker /root/data/docker
ln -s /root/data/docker /var/lib/docker --快捷方式
8.Docker镜像操作
快速检索镜像
#语法格式:docker search 关键字
docker search mysql
获取镜像
#语法格式:docker ? pull 仓库名称[:标签] 如果下载镜像时不指定标签,则默认会下载仓库中最新版本的镜像,即选择标签为 latest 标签
docker pull nginx:latest
查看镜像信息
docker images
- REPOSITORY: 镜像所属仓库
- TAG: 镜像的标签信息,标记同一个仓库中的不同镜像
- IMAGE ID :镜像的唯一ID号,唯一标识一个镜像
- CREATED: 镜像创建时间
- SIZE: 镜像大小
获取镜像的详细信息
格式:docker ? inspect 镜像ID号
为本地镜像添加新的标签
格式:docker ? tag ?名称:[ 标签]
删除镜像
格式1:docker ? rmi ? 仓库名称:标签
当一个镜像有多个标签时,只是删除其中指定的标签
格式2: docker ? rmi ?镜像ID ?[-f]
如果该镜像已经被容器使用,正确的做法是先删除依赖该镜像的所有容器,再去删除镜像
将镜像保存为本地文件
格式:docker ? save ? -o ?存储文件名 ? 存储的镜像
[root@localhost ~]# docker save -o /opt/nginx.tar nginx:latest
#将本地镜像传给另一台主机
[root@localhost ~]# scp /opt/nginx.tar 192.168.1.54:/opt
9.容器操作
9.1创建Docker容器
#语法
docker run [OPTIONS] IMAGE [COMMAND] [ARG...]
OPTIONS说明:
- -a stdin: 指定标准输入输出内容类型,可选 STDIN/STDOUT/STDERR 三项;
- -d: 后台运行容器,并返回容器ID;
- -i: 以交互模式运行容器,通常与 -t 同时使用;
- -P: 随机端口映射,容器内部端口随机映射到主机的端口
- -p: 指定端口映射,格式为:主机(宿主)端口:容器端口
- -t: 为容器重新分配一个伪输入终端,通常与 -i 同时使用;
- --name="nginx-lb": 为容器指定一个名称;
- --dns 8.8.8.8: 指定容器使用的DNS服务器,默认和宿主一致;
- --dns-search example.com: 指定容器DNS搜索域名,默认和宿主一致;
- -h "mars": 指定容器的hostname;
- -e username="ritchie": 设置环境变量;
- --env-file=[]: 从指定文件读入环境变量;
- --cpuset="0-2" or --cpuset="0,1,2": 绑定容器到指定CPU运行;
- -m :设置容器使用内存最大值;
- --net="bridge": 指定容器的网络连接类型,支持 bridge/host/none/container: 四种类型;
- --link=[]: 添加链接到另一个容器;
- --expose=[]: 开放一个端口或一组端口;
- --volume , -v: 绑定一个卷
使用docker镜像nginx:latest以后台模式启动一个容器,并将容器命名为mynginx。
docker run --name mynginx -d nginx:latest
使用镜像nginx:latest以后台模式启动一个容器,并将容器的80端口映射到主机随机端口。
docker run -P -d nginx:latest
使用镜像 nginx:latest,以后台模式启动一个容器,将容器的 80 端口映射到主机的 80 端口,主机的目录 /data 映射到容器的 /data。
docker run -p 80:80 -v /data:/data -d nginx:latest
绑定容器的 8080 端口,并将其映射到本地主机 127.0.0.1 的 80 端口上。
docker run -p 127.0.0.1:80:8080/tcp ubuntu bash
使用镜像nginx:latest以交互模式启动一个容器,在容器内执行/bin/bash命令。
runoob@runoob:~$ docker run -it nginx:latest /bin/bash
root@b8573233d675:/#
9.2容器的启动、停止、重启
#启动已被停止的容器myrunoob
docker start myrunoob
#停止运行中的容器myrunoob
docker stop myrunoob
#重启容器myrunoob
docker restart myrunoob
9.3删除容器
#强制删除容器 db01、db02:
docker rm -f db01 db02
#移除容器 nginx01 对容器 db01 的连接,连接名 db:
docker rm -l db
#删除容器 nginx01, 并删除容器挂载的数据卷:
docker rm -v nginx01
#删除所有已经停止的容器:
docker rm $(docker ps -a -q)
9.4在容器 mynginx 中开启一个交互模式的终端:
runoob@runoob:~$ docker exec -i -t mynginx /bin/bash
root@b1a0703e41e7:/#
9.5列出所有在运行的容器信息。
runoob@runoob:~$ docker ps
CONTAINER ID IMAGE COMMAND ... PORTS NAMES
09b93464c2f7 nginx:latest "nginx -g 'daemon off" ... 80/tcp, 443/tcp myrunoob
96f7f14e99ab mysql:5.6 "docker-entrypoint.sh" ... 0.0.0.0:3306->3306/tcp mymysql
输出详情介绍:
CONTAINER ID: 容器 ID。
IMAGE: 使用的镜像。
COMMAND: 启动容器时运行的命令。
CREATED: 容器的创建时间。
STATUS: 容器状态。
状态有7种:
- created(已创建)
- restarting(重启中)
- running(运行中)
- removing(迁移中)
- paused(暂停)
- exited(停止)
- dead(死亡)
PORTS: 容器的端口信息和使用的连接类型(tcp\udp)。
NAMES: 自动分配的容器名称。
9.6 导出导入容器
#将id为a404c6c174a2的容器按日期保存为tar文件。
runoob@runoob:~$ docker export -o mysql-`date +%Y%m%d`.tar a404c6c174a2
runoob@runoob:~$ ls mysql-`date +%Y%m%d`.tar
mysql-20160711.tar
#从镜像归档文件my_ubuntu_v3.tar创建镜像,命名为runoob/ubuntu:v4
runoob@runoob:~$ docker import mysql-20160711.tar runoob/ubuntu:v4
sha256:63ce4a6d6bc3fabb95dbd6c561404a309b7bdfc4e21c1d59fe9fe4299cbfea39
runoob@runoob:~$ docker images runoob/ubuntu:v4
REPOSITORY TAG IMAGE ID CREATED SIZE
runoob/ubuntu v4 63ce4a6d6bc3 20 seconds ago 142.1 MB
10.Dockerfile
Dockerfile 是一个用来构建镜像的文本文件,文本内容包含了一条条构建镜像所需的指令和说明。
#dockerfile文件示例
FROM node:7-alpine
LABEL maintainer "jakub.skalecki@ex&le.com"
ENV PROJECT_DIR=/app
WORKDIR $PROJECT_DIR
COPY package.json $PROJECT_DIR
RUN npm install
COPY . $PROJECT_DIR
ADD hom?.txt /mydir/
ENV MEDIA_DIR=/media \
NODE_ENV=production \
APP_PORT=3000
VOLUME $MEDIA_DIR
EXPOSE $APP_PORT
HEALTHCHECK CMD curl --fail http://localhost:$APP_PORT || exit 1
ENTRYPOINT ["./entrypoint.sh"]
CMD ["start"]
参数详解:
FROM 初始化一个新的构建阶段,并设置基础镜像
RUN 将在当前镜像之上的新层中执行命令,在 docker build时运行
CMD 运行程序,在docker run 时运行,但是和run命令不同,RUN 是在 docker build时运行
LABEL 添加元数据
EXPOSE 容器在运行时侦听指定的网络端口。可以指定端口是监听TCP还是UDP,如果不指定协议,默认为TCP。
ENV 设置环境变量
ADD 复制新文件、目录或远程文件,并将它们添加到指定的路径中中
COPY 语法同ADD一致,复制拷贝文件。ADD指令在读取本地tar文件会自动解压缩,copy不会自动解压缩。
VOLUME 创建一个具有指定名称的挂载数据卷
ARG 定义变量,与ENV 作用相同,不过ARG变量不会像ENV变量那样持久化到构建好的镜像中
ONBUILD 将一个触发指令添加到镜像中,以便稍后在该镜像用作另一个构建的基础时执行。也就是另外一个dockerfile FROM了这个镜像的时候执行。
STOPSIGNAL设置将发送到容器退出的系统调用信号
HEALTHCHECK用于指定某个程序或者指令来监控 docker 容器服务的运行状态。
SHELL 覆盖用于命令的shell 形式的默认 shell。
WORKDIR 工作目录,如果WORKDIR不存在,即使它没有在后续Dockerfile指令中使用,它也会被创建。
USER 设置用户名(或 UID)和可选的用户组(或 GID)
构建镜像:
#使用当前目录的 Dockerfile 创建镜像,标签为 runoob/ubuntu:v1。
docker build -t runoob/ubuntu:v1 -f /path/to/a/Dockerfile .
-f :指定要使用的Dockerfile路径;
-t: 镜像的名字及标签
11.docker compose
Compose 是用于定义和运行多容器 Docker 应用程序的工具。通过 Compose,您可以使用 YML 文件来配置应用程序需要的所有服务。然后,使用一个命令,就可以从 YML 文件配置中创建并启动所有服务。
Compose 使用的三个步骤:
- 使用 Dockerfile 定义应用程序的环境。
- 使用 docker-compose.yml 定义构成应用程序的服务,这样它们可以在隔离环境中一起运行。
- 最后,执行 docker-compose up 命令来启动并运行整个应用程序。
docker-compose.yaml示例
#docker-Compse的版本
version: '3'
#建立2个service 一个wordpress 一个 mysql
services:
wordpress:
image: wordpress
#端口映射80 映射到8080端口
ports:
- 8080:80
#环境变量2个
environment:
WORDPRESS_DB_HOST: mysql
WORDPRESS_DB_PASSWORD: root
networks:
- my-bridge
mysql:
build:
context: ./dir
dockerfile: ./Dockerfile
environment:
MYSQL_ROOT_PASSWORD: root
MYSQL_DATABASE: wordpress
volumes:
- mysql-data:/var/lib/mysql
networks:
- my-bridge
#建立一个volumes
volumes:
mysql-data:
#建立一个networks
networks:
my-bridge:
driver: bridge
执行以下命令来启动应用程序:
docker-compose up
12.Docker网络模式有哪些?
docker有四种网络模式,分别是:
- host模式 使用方法—net=host
- container模式 使用方法—net=container:name or id
- none模式 使用 —net=none
- bridge模式 使用—net=bridge
- host 模式 : 使用 --net=host 指定
1、host模式
host模式是在启动容器时指定host模式,该模式下 容器不会创建network namespace ,而是和宿主机共用network namespace。意思是容器不会虚拟出自己的网卡,配置IP等
2、container模式
指新创建容器时,既不和宿主机共用network namespace,也不创建自己的network namespace,而是和其他容器共用network namespace,除了网络模式外,其他如文件系统以及进程列表还是会有隔离,并不会共用。
3、none模式
在运行容器时,会创建自己的network namespace,但是,并不会自动虚拟出网卡,配置IP,需要手动在该容器内添加网卡以及配置IP信息等。
4、bridge模式
bridge模式是docker的默认网络模式,不用--net 参数,就是bridge模式。
容器使用独立network Namespace, 并连接到docker0虚拟网卡。通过docker0网桥以及iptables nat表配置与宿主机通信,此模式会为每一个容器分配Network Namespace、 设置IP等, 并将一个主机上的Docker容器连接到一个虚拟网桥上。
(1) 当Docker进程启动时,会在主机上创建一个名为docker0的虚拟网桥,此主机上启动的Docker容器会连接到这个虚拟网桥上。虚拟网桥的工作方式和物理交换机类似,这样主机上的所有容器就通过交换机连在了一个二层网络中。
(2) 从docker0子网中分配一-个IP给容器使用,并设置docker0的IP地址为容器的默认网关。在主机上创建—对虚拟网卡veth pair设备。veth设备总是成对出现的,它们组成了一个数据的通道,数据从一个设备进入,就会从另一个设备出来。因此,veth设备常用来连接两个网络设备。
(3) Docker将 veth pair设备的一-端放在新创建的容器中,并命名为eth0 ( 容器的网卡),另一端放在主机中,以veth*这样类似的名字命名,并将这个网络设备加入到docker0网桥中。可以通过brctl show命令查看。
(4) 使用docker run -p时,docker 实际是在iptables做了DNAT规则,实现端口转发功能。可以使用iptables -t nat -nL查看。
13.docker核心技术namespace与cgroup
1、namespace
Namespace用于隔离隔离文件系统,进程,网络,进程通信,用户等一系列的系统环境资源
命名空间是Linux内核的一项功能,该功能对内核资源进行分区,使一组进程看到一组资源,而另一组进程看到另一组资源。
- mount, 文件系统
- pid, 进程
- network, 网络
- ipc, 系统进程通信
- uts, hostname
- user, 用户
2、cgroup
Linux CGroups 全称 Linux Control Group, 它是 Linux 内核中的一个重要功能,通过为进程设置资源限制,来隔离宿主机器上的物理资源,例如 CPU、内存、磁盘 I/O 和网络带宽。
Resource limiting:资源限制,可以限制内存使用、限制处理器的最大数量,或者限制为特定的外围设备。
Prioritization:优先级控制,可以限制 CPU 利用和磁盘 IO 吞吐量。
Accounting:审计/ 统计,监视和衡量组的资源使用情况。
Control:进程控制,可以挂起或停止并重新启动一组进程。
二、K8S
1.K8S是什么?
K8S是Kubernetes的全称,用于自动部署、扩展和管理“容器化(containerized)应用程序”的开源系统。
k8s是一个主流的容器编排技术
2.K8S为我们提供了怎样的能力
自我修复:一旦某一个容器崩溃,能够在1秒中左右迅速启动新的容器
弹性伸缩:可以根据需要,自动对集群中正在运行的容器数量进行调整
服务发现:服务可以通过自动发现的形式找到它所依赖的服务
负载均衡:如果一个服务起动了多个容器,能够自动实现请求的负载均衡
版本回退:如果发现新发布的程序版本有问题,可以立即回退到原来的版本
存储编排:可以根据容器自身的需求自动创建存储卷
3.架构组件
一个k8s集群主要是由控制节点(master)、工作节点(node)构成,每个节点上都会安装不同的组件。
master:集群的控制平面,负责集群的决策 ( 管理 )
ApiServer : 资源操作的唯一入口,接收用户输入的命令,提供认证、授权、API注册和发现等机制 Scheduler : 负责集群资源调度,按照预定的调度策略将Pod调度到相应的node节点上 ControllerManager : 负责维护集群的状态,比如程序部署安排、故障检测、自动扩展、滚动更新等 Etcd :负责存储集群中各种资源对象的信息
Kubectl:客户端命令行工具,作为整个K8s集群的操作入口;
node:集群的数据平面,负责为容器提供运行环境 ( 干活 )
Kubelet : 负责维护容器的生命周期,即通过控制docker,来创建、更新、销毁容器 KubeProxy : 负责提供集群内部的服务发现和负载均衡 Docker : 负责节点上容器的各种操作
以部署一个nginx服务来说明kubernetes系统各个组件调用关系:
首先要明确,一旦kubernetes环境启动之后,master和node都会将自身的信息存储到etcd数据库中
1.一个nginx服务的安装请求会首先被发送到master节点的apiServer组件
2.apiServer组件会调用scheduler组件来决定到底应该把这个服务安装到哪个node节点上,它会从etcd中读取各个node节点的信息,然后按照一定的算法进行选择,并将结果告知apiServer
3.apiServer调用controller-manager去调度Node节点安装nginx服务
4.kubelet接收到指令后,会通知docker,然后由docker来启动一个nginx的pod
5.pod是kubernetes的最小操作单元,容器必须跑在pod中至此,一个nginx服务就运行了,如果需要访问nginx,就需要通过kube-proxy来对pod产生访问的代理,这样,外界用户就可以访问集群中的nginx服务了
4.核心概念
Master:集群控制节点,每个集群需要至少一个master节点负责集群的管控
Node:工作负载节点,由master分配容器到这些node工作节点上,然后node节点上的docker负责容器的运行
Pod:kubernetes的最小控制单元,容器都是运行在pod中的,一个pod中可以有1个或者多个容器
Controller:控制器,通过它来实现对pod的管理,比如启动pod、停止pod、伸缩pod的数量等等
Service:pod对外服务的统一入口,下面可以维护者同一类的多个pod
Label:标签,用于对pod进行分类,同一类pod会拥有相同的标签
NameSpace:命名空间,用来隔离pod的运行环境
5.资源管理
在kubernetes中,所有的内容都抽象为资源,用户需要通过操作资源来管理kubernetes。
kubernetes的本质上就是一个集群系统,用户可以在集群中部署各种服务,也就是在kubernetes集群中运行一个个的容器,并将指定的程序跑在容器中。
kubernetes的最小管理单元是pod而不是容器,所以只能将容器放在Pod中,而kubernetes一般也不会直接管理Pod,而是通过Pod控制器来管理Pod的。
Pod可以提供服务之后,就要考虑如何访问Pod中服务,kubernetes提供了Service资源实现这个功能。
k8s提供了三种资源管理方式
- 命令式对象管理:直接使用命令去操作kubernetes资源
kubectl run nginx-pod --image=nginx:1.17.1 --port=80
- 命令式对象配置:通过命令配置和配置文件去操作kubernetes资源
kubectl create/patch -f nginx-pod.yaml
- 声明式对象配置:通过apply命令和配置文件去操作kubernetes资源
kubectl apply -f nginx-pod.yaml
6.命令式对象管理
kubectl命令
kubectl是kubernetes集群的命令行工具,通过它能够对集群本身进行管理,并能够在集群上进行容器化应用的安装部署。kubectl命令的语法如下:
kubectl [command] [type] [name] [flags]
comand:指定要对资源执行的操作,例如create、get、delete
type:指定资源类型,比如deployment、pod、service
name:指定资源的名称,名称大小写敏感
flags:指定额外的可选参数
# 查看所有pod
kubectl get pod
# 查看某个pod
kubectl get pod pod_name
# 查看某个pod,以yaml格式展示结果
kubectl get pod pod_name -o yaml
下面以一个namespace / pod的创建和删除简单演示下命令的使用:
# 创建一个namespace
[root@master ~]# kubectl create namespace dev
namespace/dev created
# 获取namespace
[root@master ~]# kubectl get ns
NAME STATUS AGE
default Active 21h
dev Active 21s
kube-node-lease Active 21h
kube-public Active 21h
kube-system Active 21h
# 在此namespace下创建并运行一个nginx的Pod
[root@master ~]# kubectl run pod --image=nginx -n dev
kubectl run --generator=deployment/apps.v1 is DEPRECATED and will be removed in a future version. Use kubectl run --generator=run-pod/v1 or kubectl create instead.
deployment.apps/pod created
# 查看新创建的pod
[root@master ~]# kubectl get pod -n dev
NAME READY STATUS RESTARTS AGE
pod-864f9875b9-pcw7x 1/1 Running 0 21s
# 删除指定的pod
[root@master ~]# kubectl delete pod pod-864f9875b9-pcw7x
pod "pod-864f9875b9-pcw7x" deleted
# 删除指定的namespace
[root@master ~]# kubectl delete ns dev
namespace "dev" deleted
查看pod日志
1、查看指定pod的日志
kubectl logs <pod_name>
kubectl logs -f <pod_name> #类似tail -f的方式查看(tail -f 实时查看日志文件 tail -f 日志文件log)
2、查看指定pod中指定容器的日志
kubectl logs <pod_name> -c <container_name>
3、查看Docker容器日志
docker logs <container_id>
7命令式对象配置
命令式对象配置就是使用命令配合配置文件一起来操作kubernetes资源。
1) 创建一个nginxpod.yaml,内容如下:
apiVersion: v1
kind: Namespace
metadata:
name: dev
---
apiVersion: v1
kind: Pod
metadata:
name: nginxpod
namespace: dev
spec:
containers:
- name: nginx-containers
image: nginx:1.17.1
2)执行create命令,创建资源:
[root@master ~]# kubectl create -f nginxpod.yaml
namespace/dev created
pod/nginxpod created
此时发现创建了两个资源对象,分别是namespace和pod
3)执行get命令,查看资源:
[root@master ~]# kubectl get -f nginxpod.yaml
NAME STATUS AGE
namespace/dev Active 18s
NAME READY STATUS RESTARTS AGE
pod/nginxpod 1/1 Running 0 17s
这样就显示了两个资源对象的信息
4)执行delete命令,删除资源:
[root@master ~]# kubectl delete -f nginxpod.yaml
namespace "dev" deleted
pod "nginxpod" deleted
此时发现两个资源对象被删除了
总结:
命令式对象配置的方式操作资源,可以简单的认为:命令 + yaml配置文件(里面是命令需要的各种参数)
8.声明式对象配置
声明式对象配置跟命令式对象配置很相似,但是它只有一个命令apply。
# 首先执行一次kubectl apply -f yaml文件,发现创建了资源
[root@master ~]# kubectl apply -f nginxpod.yaml
namespace/dev created
pod/nginxpod created
# 再次执行一次kubectl apply -f yaml文件,发现说资源没有变动
[root@master ~]# kubectl apply -f nginxpod.yaml
namespace/dev unchanged
pod/nginxpod unchanged
9.Namespace
Namespace是kubernetes系统中的一种非常重要资源,它的主要作用是用来实现多套环境的资源隔离或者多租户的资源隔离。
默认情况下,kubernetes集群中的所有的Pod都是可以相互访问的。但是在实际中,可能不想让两个Pod之间进行互相的访问,那此时就可以将两个Pod划分到不同的namespace下。kubernetes通过将集群内部的资源分配到不同的Namespace中,可以形成逻辑上的"组",以方便不同的组的资源进行隔离使用和管理。
可以通过kubernetes的授权机制,将不同的namespace交给不同租户进行管理,这样就实现了多租户的资源隔离。此时还能结合kubernetes的资源配额机制,限定不同租户能占用的资源,例如CPU使用量、内存使用量等等,来实现租户可用资源的管理。
kubernetes在集群启动之后,会默认创建几个namespace
[root@master ~]# kubectl get namespace
NAME STATUS AGE
default Active 45h # 所有未指定Namespace的对象都会被分配在default命名空间
kube-node-lease Active 45h # 集群节点之间的心跳维护,v1.13开始引入
kube-public Active 45h # 此命名空间下的资源可以被所有人访问(包括未认证用户)
kube-system Active 45h # 所有由Kubernetes系统创建的资源都处于这个命名空间
下面来看namespace资源的具体操作:
查看
# 1 查看所有的ns 命令:kubectl get ns
[root@master ~]# kubectl get ns
NAME STATUS AGE
default Active 45h
kube-node-lease Active 45h
kube-public Active 45h
kube-system Active 45h
# 2 查看指定的ns 命令:kubectl get ns ns名称
[root@master ~]# kubectl get ns default
NAME STATUS AGE
default Active 45h
# 3 指定输出格式 命令:kubectl get ns ns名称 -o 格式参数
# kubernetes支持的格式有很多,比较常见的是wide、json、yaml
[root@master ~]# kubectl get ns default -o yaml
apiVersion: v1
kind: Namespace
metadata:
creationTimestamp: "2020-04-05T04:44:16Z"
name: default
resourceVersion: "151"
selfLink: /api/v1/namespaces/default
uid: 7405f73a-e486-43d4-9db6-145f1409f090
spec:
finalizers:
- kubernetes
status:
phase: Active
# 4 查看ns详情 命令:kubectl describe ns ns名称
[root@master ~]# kubectl describe ns default
Name: default
Labels: <none>
Annotations: <none>
Status: Active # Active 命名空间正在使用中 Terminating 正在删除命名空间
# ResourceQuota 针对namespace做的资源限制
# LimitRange针对namespace中的每个组件做的资源限制
No resource quota.
No LimitRange resource.
创建
# 创建namespace
[root@master ~]# kubectl create ns dev
namespace/dev created
删除
# 删除namespace
[root@master ~]# kubectl delete ns dev
namespace "dev" deleted
配置方式
首先准备一个yaml文件:ns-dev.yaml
apiVersion: v1
kind: Namespace
metadata:
name: dev
然后就可以执行对应的创建和删除命令了:
创建:kubectl create -f ns-dev.yaml
删除:kubectl delete -f ns-dev.yaml
10.Pod
Pod是kubernetes集群进行管理的最小单元,程序要运行必须部署在容器中,而容器必须存在于Pod中。
Pod可以认为是容器的封装,一个Pod中可以存在一个或者多个容器。
kubernetes在集群启动之后,集群中的各个组件也都是以Pod方式运行的。可以通过下面命令查看:
[root@master ~]# kubectl get pod -n kube-system
NAMESPACE NAME READY STATUS RESTARTS AGE
kube-system coredns-6955765f44-68g6v 1/1 Running 0 2d1h
kube-system coredns-6955765f44-cs5r8 1/1 Running 0 2d1h
kube-system etcd-master 1/1 Running 0 2d1h
kube-system kube-apiserver-master 1/1 Running 0 2d1h
kube-system kube-controller-manager-master 1/1 Running 0 2d1h
kube-system kube-flannel-ds-amd64-47r25 1/1 Running 0 2d1h
kube-system kube-flannel-ds-amd64-ls5lh 1/1 Running 0 2d1h
kube-system kube-proxy-685tk 1/1 Running 0 2d1h
kube-system kube-proxy-87spt 1/1 Running 0 2d1h
kube-system kube-scheduler-master 1/1 Running 0 2d1h
创建并运行
kubernetes没有提供单独运行Pod的命令,都是通过Pod控制器来实现的
# 命令格式: kubectl run (pod控制器名称) [参数]
# --image 指定Pod的镜像
# --port 指定端口
# --namespace 指定namespace
[root@master ~]# kubectl run nginx --image=nginx:1.17.1 --port=80 --namespace dev
deployment.apps/nginx created
查看pod信息
# 查看Pod基本信息
[root@master ~]# kubectl get pods -n dev
NAME READY STATUS RESTARTS AGE
nginx-5ff7956ff6-fg2db 1/1 Running 0 43s
# 查看Pod的详细信息
[root@master ~]# kubectl describe pod nginx-5ff7956ff6-fg2db -n dev
Name: nginx-5ff7956ff6-fg2db
Namespace: dev
Priority: 0
Node: node1/192.168.109.101
Start Time: Wed, 08 Apr 2020 09:29:24 +0800
Labels: pod-template-hash=5ff7956ff6
run=nginx
Annotations: <none>
Status: Running
IP: 10.244.1.23
IPs:
IP: 10.244.1.23
Controlled By: ReplicaSet/nginx-5ff7956ff6
Containers:
nginx:
Container ID: docker://4c62b8c0648d2512380f4ffa5da2c99d16e05634979973449c98e9b829f6253c
Image: nginx:1.17.1
Image ID: docker-pullable://nginx@sha256:485b610fefec7ff6c463ced9623314a04ed67e3945b9c08d7e53a47f6d108dc7
Port: 80/TCP
Host Port: 0/TCP
State: Running
Started: Wed, 08 Apr 2020 09:30:01 +0800
Ready: True
Restart Count: 0
Environment: <none>
Mounts:
/var/run/secrets/kubernetes.io/serviceaccount from default-token-hwvvw (ro)
Conditions:
Type Status
Initialized True
Ready True
ContainersReady True
PodScheduled True
Volumes:
default-token-hwvvw:
Type: Secret (a volume populated by a Secret)
SecretName: default-token-hwvvw
Optional: false
QoS Class: BestEffort
Node-Selectors: <none>
Tolerations: node.kubernetes.io/not-ready:NoExecute for 300s
node.kubernetes.io/unreachable:NoExecute for 300s
Events:
Type Reason Age From Message
---- ------ ---- ---- -------
Normal Scheduled <unknown> default-scheduler Successfully assigned dev/nginx-5ff7956ff6-fg2db to node1
Normal Pulling 4m11s kubelet, node1 Pulling image "nginx:1.17.1"
Normal Pulled 3m36s kubelet, node1 Successfully pulled image "nginx:1.17.1"
Normal Created 3m36s kubelet, node1 Created container nginx
Normal Started 3m36s kubelet, node1 Started container nginx
访问Pod
# 获取podIP
[root@master ~]# kubectl get pods -n dev -o wide
NAME READY STATUS RESTARTS AGE IP NODE ...
nginx-5ff7956ff6-fg2db 1/1 Running 0 190s 10.244.1.23 node1 ...
#访问POD
[root@master ~]# curl http://10.244.1.23:80
<!DOCTYPE html>
<html>
<head>
<title>Welcome to nginx!</title>
</head>
<body>
<p><em>Thank you for using nginx.</em></p>
</body>
</html>
删除指定Pod
# 删除指定Pod
[root@master ~]# kubectl delete pod nginx-5ff7956ff6-fg2db -n dev
pod "nginx-5ff7956ff6-fg2db" deleted
# 此时,显示删除Pod成功,但是再查询,发现又新产生了一个
[root@master ~]# kubectl get pods -n dev
NAME READY STATUS RESTARTS AGE
nginx-5ff7956ff6-jj4ng 1/1 Running 0 21s
# 这是因为当前Pod是由Pod控制器创建的,控制器会监控Pod状况,一旦发现Pod死亡,会立即重建
# 此时要想删除Pod,必须删除Pod控制器
# 先来查询一下当前namespace下的Pod控制器
[root@master ~]# kubectl get deploy -n dev
NAME READY UP-TO-DATE AVAILABLE AGE
nginx 1/1 1 1 9m7s
# 接下来,删除此PodPod控制器
[root@master ~]# kubectl delete deploy nginx -n dev
deployment.apps "nginx" deleted
# 稍等片刻,再查询Pod,发现Pod被删除了
[root@master ~]# kubectl get pods -n dev
No resources found in dev namespace.
配置操作
创建一个pod-nginx.yaml,内容如下:
apiVersion: v1
kind: Pod
metadata:
name: nginx
namespace: dev
spec:
containers:
- image: nginx:1.17.1
name: pod
ports:
- name: nginx-port
containerPort: 80
protocol: TCP
然后就可以执行对应的创建和删除命令了:
创建:kubectl create -f pod-nginx.yaml
删除:kubectl delete -f pod-nginx.yaml
11.Label
Label是kubernetes系统中的一个重要概念。它的作用就是在资源上添加标识,用来对它们进行区分和选择。
Label的特点:
- 一个Label会以key/value键值对的形式附加到各种对象上,如Node、Pod、Service等等
- 一个资源对象可以定义任意数量的Label ,同一个Label也可以被添加到任意数量的资源对象上去
- Label通常在资源对象定义时确定,当然也可以在对象创建后动态添加或者删除
可以通过Label实现资源的多维度分组,以便灵活、方便地进行资源分配、调度、配置、部署等管理工作。
一些常用的Label 示例如下:
- 版本标签:"version":"release", "version":"stable"......
- 环境标签:"environment":"dev","environment":"test","environment":"pro"
- 架构标签:"tier":"frontend","tier":"backend"
标签定义完毕之后,还要考虑到标签的选择,这就要使用到Label Selector,即:
Label用于给某个资源对象定义标识
Label Selector用于查询和筛选拥有某些标签的资源对象
当前有两种Label Selector:
- 基于等式的Label Selector
name = slave: 选择所有包含Label中key="name"且value="slave"的对象
env != production: 选择所有包括Label中的key="env"且value不等于"production"的对象
- 基于集合的Label Selector
name in (master, slave): 选择所有包含Label中的key="name"且value="master"或"slave"的对象
name not in (frontend): 选择所有包含Label中的key="name"且value不等于"frontend"的对象
标签的选择条件可以使用多个,此时将多个Label Selector进行组合,使用逗号","进行分隔即可。例如:
name=slave,env!=production
name not in (frontend),env!=production
命令方式
# 为pod资源打标签
[root@master ~]# kubectl label pod nginx-pod version=1.0 -n dev
pod/nginx-pod labeled
# 为pod资源更新标签
[root@master ~]# kubectl label pod nginx-pod version=2.0 -n dev --overwrite
pod/nginx-pod labeled
# 查看标签
[root@master ~]# kubectl get pod nginx-pod -n dev --show-labels
NAME READY STATUS RESTARTS AGE LABELS
nginx-pod 1/1 Running 0 10m version=2.0
# 筛选标签
[root@master ~]# kubectl get pod -n dev -l version=2.0 --show-labels
NAME READY STATUS RESTARTS AGE LABELS
nginx-pod 1/1 Running 0 17m version=2.0
[root@master ~]# kubectl get pod -n dev -l version!=2.0 --show-labels
No resources found in dev namespace.
#删除标签
[root@master ~]# kubectl label pod nginx-pod version- -n dev
pod/nginx-pod labeled
配置方式
apiVersion: v1
kind: Pod
metadata:
name: nginx
namespace: dev
labels:
version: "3.0"
env: "test"
spec:
containers:
- image: nginx:1.17.1
name: pod
ports:
- name: nginx-port
containerPort: 80
protocol: TCP
然后就可以执行对应的更新命令了:kubectl apply -f pod-nginx.yaml
12.Deployment
在kubernetes中,Pod是最小的控制单元,但是kubernetes很少直接控制Pod,一般都是通过Pod控制器来完成的。Pod控制器用于pod的管理,确保pod资源符合预期的状态,当pod的资源出现故障时,会尝试进行重启或重建pod。
在kubernetes中Pod控制器的种类有很多,本章节只介绍一种:Deployment。
命令操作
# 命令格式: kubectl run deployment名称 [参数]
# --image 指定pod的镜像
# --port 指定端口
# --replicas 指定创建pod数量
# --namespace 指定namespace
[root@master ~]# kubectl run nginx --image=nginx:1.17.1 --port=80 --replicas=3 -n dev
deployment.apps/nginx created
# 查看创建的Pod
[root@master ~]# kubectl get pods -n dev
NAME READY STATUS RESTARTS AGE
nginx-5ff7956ff6-6k8cb 1/1 Running 0 19s
nginx-5ff7956ff6-jxfjt 1/1 Running 0 19s
nginx-5ff7956ff6-v6jqw 1/1 Running 0 19s
# 查看deployment的信息
[root@master ~]# kubectl get deploy -n dev
NAME READY UP-TO-DATE AVAILABLE AGE
nginx 3/3 3 3 2m42s
# UP-TO-DATE:成功升级的副本数量
# AVAILABLE:可用副本的数量
[root@master ~]# kubectl get deploy -n dev -o wide
NAME READY UP-TO-DATE AVAILABLE AGE CONTAINERS IMAGES SELECTOR
nginx 3/3 3 3 2m51s nginx nginx:1.17.1 run=nginx
# 查看deployment的详细信息
[root@master ~]# kubectl describe deploy nginx -n dev
Name: nginx
Namespace: dev
CreationTimestamp: Wed, 08 Apr 2020 11:14:14 +0800
Labels: run=nginx
Annotations: deployment.kubernetes.io/revision: 1
Selector: run=nginx
Replicas: 3 desired | 3 updated | 3 total | 3 available | 0 unavailable
StrategyType: RollingUpdate
MinReadySeconds: 0
RollingUpdateStrategy: 25% max unavailable, 25% max surge
Pod Template:
Labels: run=nginx
Containers:
nginx:
Image: nginx:1.17.1
Port: 80/TCP
Host Port: 0/TCP
Environment: <none>
Mounts: <none>
Volumes: <none>
Conditions:
Type Status Reason
---- ------ ------
Available True MinimumReplicasAvailable
Progressing True NewReplicaSetAvailable
OldReplicaSets: <none>
NewReplicaSet: nginx-5ff7956ff6 (3/3 replicas created)
Events:
Type Reason Age From Message
---- ------ ---- ---- -------
Normal ScalingReplicaSet 5m43s deployment-controller Scaled up replicaset nginx-5ff7956ff6 to 3
# 删除
[root@master ~]# kubectl delete deploy nginx -n dev
deployment.apps "nginx" deleted
配置操作
创建一个deploy-nginx.yaml,内容如下:
apiVersion: apps/v1
kind: Deployment
metadata:
name: nginx
namespace: dev
spec:
replicas: 3
selector:
matchLabels:
run: nginx
template:
metadata:
labels:
run: nginx
spec:
containers:
- image: nginx:1.17.1
name: nginx
ports:
- containerPort: 80
protocol: TCP
然后就可以执行对应的创建和删除命令了:
创建:kubectl create -f deploy-nginx.yaml
删除:kubectl delete -f deploy-nginx.yaml
13Service
通过上节课的学习,已经能够利用Deployment来创建一组Pod来提供具有高可用性的服务。
虽然每个Pod都会分配一个单独的Pod IP,然而却存在如下两问题:
- Pod IP 会随着Pod的重建产生变化
- Pod IP 仅仅是集群内可见的虚拟IP,外部无法访问
这样对于访问这个服务带来了难度。因此,kubernetes设计了Service来解决这个问题。
Service可以看作是一组同类Pod对外的访问接口。借助Service,应用可以方便地实现服务发现和负载均衡。
操作一:创建集群内部可访问的Service
# 暴露Service
[root@master ~]# kubectl expose deploy nginx --name=svc-nginx1 --type=ClusterIP --port=80 --target-port=80 -n dev
service/svc-nginx1 exposed
# 查看service
[root@master ~]# kubectl get svc svc-nginx -n dev -o wide
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE SELECTOR
svc-nginx1 ClusterIP 10.109.179.231 <none> 80/TCP 3m51s run=nginx
# 这里产生了一个CLUSTER-IP,这就是service的IP,在Service的生命周期中,这个地址是不会变动的
# 可以通过这个IP访问当前service对应的POD
[root@master ~]# curl 10.109.179.231:80
<!DOCTYPE html>
<html>
<head>
<title>Welcome to nginx!</title>
</head>
<body>
<h1>Welcome to nginx!</h1>
.......
</body>
</html>
操作二:创建集群外部也可访问的Service
# 上面创建的Service的type类型为ClusterIP,这个ip地址只用集群内部可访问
# 如果需要创建外部也可以访问的Service,需要修改type为NodePort
[root@master ~]# kubectl expose deploy nginx --name=svc-nginx2 --type=NodePort --port=80 --target-port=80 -n dev
service/svc-nginx2 exposed
# 此时查看,会发现出现了NodePort类型的Service,而且有一对Port(80:31928/TC)
[root@master ~]# kubectl get svc svc-nginx-1 -n dev -o wide
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE SELECTOR
svc-nginx2 NodePort 10.100.94.0 <none> 80:31928/TCP 9s run=nginx
# 接下来就可以通过集群外的主机访问 节点IP:31928访问服务了
# 例如在的电脑主机上通过浏览器访问下面的地址
http://192.168.109.100:31928/
删除Service
[root@master ~]# kubectl delete svc svc-nginx-1 -n dev service "svc-nginx-1" deleted
配置方式
创建一个svc-nginx.yaml,内容如下:
apiVersion: v1
kind: Service
metadata:
name: svc-nginx
namespace: dev
spec:
clusterIP: 10.109.179.231
ports:
- port: 80
protocol: TCP
targetPort: 80
selector:
run: nginx
type: ClusterIP
然后就可以执行对应的创建和删除命令了:
创建:kubectl create -f svc-nginx.yaml
删除:kubectl delete -f svc-nginx.yaml
标签: do