无理数的概念是什么?
无理数,也称为无限不循环小数,不能写作两整数之比。若将它写成小数形式,小数点之后的数字有无限多个,并且不会循环。
无理数是实数中不能精确地表示为两个整数之比的数,即无限不循环小数。 如圆周率、2的平方根等。实数(real munber)分为培弊磨有理数和无理数(irrational number) 有理数是一个整数a和一个非零整数b的比,通常写作 a/b。
扩展资料:
无理数在位置数字系统中表示(例如,以十进制数字或任何其他自然基础表示)不会终止,也不会重复,即不包含数字的子序列。例如,数字π的十进制表示从3.141592653589793开始,但没有有限数字的数字可以精确地表示π,也不重复。
必须终止或重复的有理数字的十进制扩展的配斗证据不同于终止或重复的十进制扩展必须是有理数的证卜轿据,尽管基本而不冗长,但两种证明都需要一些工作。数学家通常不会把“终止或重复”作为有理数概念的定义。
参考资料来源:百度百科-无理数
无理数的定义?
无理数是所有不是有理数字的实数,后者是由整数的比率(或分数)构成的数字。当两个线段的长度比是无理数时,线段也被描述为不可比较的,这意味着它们不能“测量”,即没有长度(“度量”)。
无理数也称为无限不循环小数,不能写作两整数之比。若将宴逗运它写成小数形式,小数点之指游后的数字有无限多个,并且不会循环。
常见的无理数有非完全平方数的平方根、π和e(其中后两者均为超越数)等。无理数晌梁的另一特征是无限的连分数表达式。无理数最早由毕达哥拉斯学派弟子希伯索斯发现。
扩展资料:
无理数在位置数字系统中表示不会终止,也不会重复,即不包含数字的子序列。例如,数字π的十进制表示从3.141592653589793开始,但没有有限数字的数字可以精确地表示π,也不重复。
必须终止或重复的有理数字的十进制扩展的证据不同于终止或重复的十进制扩展必须是有理数的证据,尽管基本而不冗长,但两种证明都需要一些工作。数学家通常不会把“终止或重复”作为有理数概念的定义。无理数也可以通过非终止的连续分数来处理。
无理数的定义和概念是什么
无限不循环的小数就是无理数。换句话察配说,就是不可以化为整数或者整数比的数。常见的无理数有非完全平方数的平方根、π等。
一.无理数的定义
无理数,也称为无限不循环小数,不能写作两整数之比。若将它写成小数形式,小数点之后的数字有无限多个,并且不会循环。 常见的无理数有非完全平方数的平方根、π和e(其中后两者均为超越数)等。
二.有理数和无理数的区别
实数分为有理数和无理数。有理数和无理数主要区别有两点:
(1)有理数可分为整数(正整数、0、负整数)和分数(正分数、负分数)。把有理数哪大和无理数都写成小数形式时,有理数能写成有限小数或无限循环小数,比如4=4.0;4/5=0.8等等;也可分为正有理数(正整数、正分数),0,负有理数(负整数、负分数),而无理数只能写成无限不循环小数.
(2)所有的有理数都可以写成两个整数之比,而无理数却不能写成两个整数之比.因此,无理数也叫做非比数。
三.无理数的性质
1.无理数加(减)无理数既可以是无理数又可以是有理数。
2.无理数乘(除)无理数既可以是无理数又李没竖可以是有理数。
3.无理数加(减)有理数一定是无理数。
4.无理数乘(除)一个非0有理数一定是无理数。
无理数概念是什么?
无理数,也称为无限不循环小数,不能写作两整数之比。若将它写成小数形式,小数点之后的数字有无限多个,并且不会循环。常见的无理数有非完全平方数的平方根、π和e(其中后两者均为超越数)等。
无理数的性质:
1、无理数加(减)无理数既可以是无理数又可以是有理数。
2、无理数乘(除)无理数既可以是无理数又可以是有理数。
3、无理数芹祥樱加(减)有理数一定是无理数。
4、无理数乘(除)一个非0有理数一定是无理数。
有理数和无理数的区别:
1、性质区别:
有理数是两个整数的比,总能写成整数、有限小数或无限循环小数;无理数不能写嫌丛成两个整数之比,是无限不循环小数。
2、结构区别宴腊:
有理数是整数和分数的统称;无理数是所有不是有理数的实数。
3、范围区别:
有理数集是整数集的扩张,在有理数集内,加法、减法、乘法、除法(除数不为零)4种运算均可进行;无理数是指实数范围内不能表示成两个整数之比的数。
以上文章内容就是科灵网为大家介绍的无理数的概念和无理数的概念及例子的详细回答,希望能够帮助到大家;如果你还想了解更多财经资讯知识,可以收藏我们的网站!
标签: 无理数的概念