比特币源码研读一:椭圆曲线在比特币密码中的加密原理
参加比特币源码研读班后首次写作,看到前辈black写的有关密钥,地址写的很好了,就选了他没有写的椭圆曲线,斗胆写这一篇。
在密码学上有两种加密方式,分别是对称密钥加密和非对称密钥加密。
对称加密:加密和解密使用的同样的密钥。
非对称加密:加密和解密是使用的不同的密钥。汪郑
二战中图灵破解德军的恩尼格码应该就是用的对称加密,因为他的加密和解密是同一个密钥。比特币的加密是非对称加密,而且用的是破解难度较大的椭圆曲线加密,简称ECC。
非对称加密的通用原理就是用一个难以解决的数学难题做到加密效果,比如RSA加密算法。RSA加密算法是用求解一个极大整数的因数的难题做到加密效果的。就是说两个极大数相乘,得到乘积很容易,但是反过来算数一个极大整数是由哪两个数乘积算出来的就非常困难。
下面简要介绍一下椭圆曲线加密算法ECC。
首先椭圆曲线的通式是这个样子的:
一般简化为这个样子:
()发公式必须吐槽一下,太麻烦了。)
其中
这样做就排除了带有奇点的椭圆曲线,可以理解为所有的点都有一条切线。
图像有几种,下面列举几个:[1]
椭圆曲线其实跟椭圆关系不大,也不像圆锥曲线那样,是有圆锥的物理模型为基础的。在计算椭圆曲线的周长时,需要用到椭圆积分,而椭圆曲线的简化通式:
,周长公式在变换后有一项是这样的:,平方之后两者基本一样。
我们大体了解了椭圆曲线,就会有一个疑问,这个东西怎么加密的呢李闹?也就是说椭圆曲线是基于怎样的数学难题呢?在此之前还得了解一些最少必要知识:椭圆曲线加法,离散型椭圆曲线。
椭圆曲线加法
数学家门从普通的代数运算中,抽象出了加群(也叫阿贝尔群或交换群),使得在加群中,实数的算法和椭圆曲线的算法得到统一。
数学中的“群”是一个由我们定义了一种二元运算的集合,二元运算我们称之为“加法”,并用符号“+”来表示。为了让一个集合G成为群,必须定义加法运算并使之具有以下四个特性:
1. 封闭性:如果a和b是集合G中的元素,那么(a + b)也是集合G中的元素。
2. 结合律:(a + b) + c = a + (b + c);
3. 存在单位元0,使得a + 0 = 0 + a =a;
4. 每个元素都有逆元,即:对于任意a,存在b,使得a + b = 0.
如果我们增加第5个条件:
5. 交换律: a + b = b + a
那么,称这个群为阿贝尔群。[1]
运算法则:任意取椭圆曲线上两点P、Q (若P、Q两点重合,则做P点的切线)做直线交于椭圆曲线的另一点R’,过R’做y轴的平行线交于R。我们规定P+Q=R。(如图)[2]
特别的,当P和Q重合时,P+Q=P+P=2P,对于共线的三点,P,Q,R’有P+Q+R’=0∞.
这里的0∞不是实数意义的0,而是指的无穷远点(这里的无穷远点就不细说了,你可以理解为这个点非常遥远,遥远到两条平行线都在这一点相交了。具体介绍可以看参考文献[2])。
注意这里的R与R’之间的区别,P+Q=R,R并没有与P,Q共线,是R’与P,Q共线,不要搞错了。
法则详解:
这里的+不是实数中普通的加法,而是从普通加法中抽象出来的加法,他具备普通加法的一些性质,但具体的运算法则显然与普通加法不同。
根据这个法则,可以知道椭圆曲线无穷远点O∞与椭圆曲线上一点P的连线交于P’,过P’作y轴的平行线交于P,所以有无穷远点 O∞+ P = P 。这样,无穷远点 O∞的作用与普通加法中零的作用相当(0+2=2),我们把无穷远点 O∞ 称为零元。同时我们把P’称为P的负元(简称,负P;记作,-P)。(参见下图)
离散型椭圆曲线
上面给出的很好看的椭圆曲线是在实数域上的连续曲线,这个是不能用来加密的,原哪陵罩因我没有细究,但一定是连续曲线上的运算太简单。真正用于加密的椭圆曲线是离散型的。要想有一个离散型的椭圆曲线,先得有一个有限域。
域:在抽象代数中,域(Field)之一种可进行加、减、乘、除运算的代数结构。它是从普通实数的运算中抽像出来的。这一点与阿贝尔群很类似。只不过多了乘法,和与乘法相关的分配率。
域有如下性质[3]:
1.在加法和乘法上封闭,即域里的两个数相加或相乘的结果也在这个域中。
2.加法和乘法符合结合律,交换率,分配率。
3.存在加法单位,也可以叫做零元。即存在元素0,对于有限域内所有的元素a,有a+0=a。
4.存在乘法单位,也可以叫做单位元。即存在元素1,对于有限域内所有的元素a,有1*a=a。
5.存在加法逆元,即对于有限域中所有的元素a,都存在a+(-a)=0.
6.存在乘法逆元,即对于有限域中所有的元素a,都存在a*=0.
在掌握了这些知识后,我们将椭圆曲线离散化。我们给出一个有限域Fp,这个域只有有限个元素。Fp中只有p(p为素数)个元素0,1,2 …… p-2,p-1;
Fp 的加法(a+b)法则是 a+b≡c (mod p);它的意思是同余,即(a+b)÷p的余数与c÷p的余数相同。
Fp 的乘法(a×b)法则是 a×b≡c (mod p);
Fp 的除法(a÷b)法则是 a/b≡c (mod p);即 a×b∧-1≡c (mod p);(也是一个0到p-1之间的整数,但满足b×b∧-1≡1 (mod p);
Fp 的单位元是1,零元是 0(这里的0就不是无穷远点了,而是真正的实数0)。
下面我们就试着把
这条曲线定义在Fp上:
选择两个满足下列条件的小于p(p为素数)的非负整数a、b,且a,b满足
则满足下列方程的所有点(x,y),再加上无穷远点O∞ ,构成一条椭圆曲线。
其中 x,y属于0到p-1间的整数,并将这条椭圆曲线记为Ep(a,b)。
图是我手画的,大家凑合看哈。不得不说,p取7时,别看只有10个点,但计算量还是很大的。
Fp上的椭圆曲线同样有加法,法则如下:
1. 无穷远点 O∞是零元,有O∞+ O∞= O∞,O∞+P=P
2. P(x,y)的负元是 (x,-y),有P+(-P)= O∞
3. P(x1,y1),Q(x2,y2)的和R(x3,y3) 有如下关系:
x3≡-x1-x2(mod p)
y3≡k(x1-x3)-y1(mod p)
其中若P=Q 则 k=(3+a)/2y1 若P≠Q,则k=(y2-y1)/(x2-x1)
通过这些法则,就可以进行离散型椭圆曲线的计算。
例:根据我画的图,(1,1)中的点P(2,4),求2P。
解:把点带入公式k=(3*x∧2+a)/2y1
有(3*2∧2+1)/2*4=6(mod 7).
(注意,有些小伙伴可能算出13/8,这是不对的,这里是模数算数,就像钟表一样,过了12点又回到1点,所以在模为7的世界里,13=6,8=1).
x=6*6-2-2=4(mod 7)
y=6*(2-4)-4=2 (mod 7)
所以2P的坐标为(2,4)
那椭圆曲线上有什么难题呢?在模数足够大的情况下,上面这个计算过程的逆运算就足够难。
给出如下等式:
K=kG (其中 K,G为Ep(a,b)上的点,k为小于n(n是点G的阶)的整数)不难发现,给定k和G,根据加法法则,计算K很容易;但给定K和G,求k就相对困难了。
这就是椭圆曲线加密算法采用的难题。我们把点G称为基点(base point),k称为私钥,K称为公钥。
现在我们描述一个利用椭圆曲线进行加密通信的过程[2]:
1、用户A选定一条椭圆曲线Ep(a,b),并取椭圆曲线上一点,作为基点G。
2、用户A选择一个私钥k,并生成公钥K=kG。
3、用户A将Ep(a,b)和点K,G传给用户B。
4、用户B接到信息后 ,将待传输的明文编码到Ep(a,b)上一点M(编码方法很多,这里不作讨论),并产生一个随机整数r(rn)。
5、用户B计算点C1=M+rK;C2=rG。
6、用户B将C1、C2传给用户A。
7、用户A接到信息后,计算C1-kC2,结果就是点M。因为
C1-kC2=M+rK-k(rG)=M+rK-r(kG)=M
再对点M进行解码就可以得到明文。
整个过程如下图所示:
密码学中,描述一条Fp上的椭圆曲线,常用到六个参量:
T=(p,a,b,G,n,h),p 、a 、b 用来确定一条椭圆曲线,G为基点,n为点G的阶,h 是椭圆曲线上所有点的个数m与n相除的整数部分
这几个参量取值的选择,直接影响了加密的安全性。参量值一般要求满足以下几个条件:
1、p 当然越大越安全,但越大,计算速度会变慢,200位左右可以满足一般安全要求;
2、p≠n×h;
3、pt≠1 (mod n),1≤t20;
4、4a3+27b2≠0 (mod p);
5、n 为素数;
6、h≤4。
200位位的一个数字,那得多大?而且还是素数,所以这种方式是非常安全的。而且再一次交易中,区块被记录下来只有10分钟的时间,也就是说要想解决这个难题必须在10分钟以内。即便有技术能够在10分钟以内破解了现在这个难度的加密算法,比特币社区还可以予以反制,提高破解难度。所以比特币交易很安全,除非自己丢掉密钥,否则不存在被破解可能。
第一次写一个完全陌生的数学领域的知识,也许我有错误的地方,也许有没讲明白的地方,留言讨论吧。总之写完后对比特比系统的安全性表示很放心。
参考文献
[1] 椭圆曲线密码学简介
[2] 什么是椭圆曲线加密(ECC)
[3] 域(数学)维基百科
区块链研习社源码研读班 高若翔
花火交易所系统 花火交易所APP模式搭建源码花火交易所系统
现在的美股市场极其类似于2017年的数字货币市场,指数(比特币)在调动大家的情绪,而年轻的投资者却一窝蜂的冲进了各种没有什么价值、价格低廉、交易量低的垃圾股(山寨币)。
在互联网和 游戏 领域,区块链如今可是一个热门的话题。甚至有些人会说,区块链技术是继大型机、个人电脑、互联网、移动互联网之后计算范式的第五次颠覆式创新。区块链的未来究竟会变成什么样,大家都难以判定,但我深信,区块链的应用一定是未来的发展趋势。
“ 花火交易所系统 ”APP模式开发方案,花火交易所系统开发,花火交易所模式开发,花火交易所APP开发,花火交易所软件开发,花火交易所模式系统开发费用,类似花火交易所平台搭建案例,花火交易所挖矿APP开发,花火交易所APP模式开发源码。
温馨提示:文章收集于互联网,仅供开发需求者作模式参考!非平台方!玩家勿扰!
一、花火交易所app软件介绍:
花火交易所app是一款全新的手机数字货币交易平台,花火交易所app支持多种在国际货币市场常见的货币类型,通过花火交易所app可以帮助大家快速完成货币交易业务!
花火链上交易所平台是基于RIPPLE的RTXP协议打造的全球首家去中心化的数字资产交易平台,在保留传统橘滑交易平台基础功能(币币交易、OTC交易、交易挖矿、C2C交易等)的同时,花圆薯腊火凭借其过硬的技术实力,成功打破传统数字资产交易平台应用边界、资产边界、功能边界三大边界,为花火用户创造了全新的数字经济体验。
二、花火交易所app平台收益介绍:
1)花火平台交易手续费33%,加权分给推广手丛算力排名前33的社区推广账号。
2)项目方上币贡献,项目方10%母币的33%加权分给推广算力排名前33的社区推广账号,以项目方上线为准。
3)分红时间:1个月分红一次,开始时间2020年4月开始计算,第一次2020年5月分红。
三、花火交易所app平台优势:
1、不耗能
2、门槛低
3、用户裂变
4、货币发行权和价值创造着统一
5、流通,持币、推广让更多人使用流通
6、发起方:十大社区+技术社区
四、花火交易所app平台特色:
1、为大家带来了更加优质的数字货币交易平台,打造了更加安全可靠的数字货币交易平台。
2、第三方专业的资金管控平台,更加有效的保障投资者的资金安全。
3、强大的风控系统,让大家更好地进行数字货币的投资理财。
4、这里为大家带来了丰富的数字货币,提供了在线数字货币交易服务。
5、带来了丰富的数字货币资讯,让大家更好的进行市场行情的了解。
花火交易所为用户提供完善的无边界交易平台,这里有超多数字货币方面的资讯和交易行情信息,更新都是很及时的,还可以在线管理自己的数字资产,轻松享受安全可靠的交易和发展平台。
比特币的原理
比特币交易平台的盈利方式是手续费,也有其它的增值收费模式。
比特币(Bitcoin)是一种基于去中心化,采用点对点网络与共识主动性,开放源代码,以区块链作为底层孙段岩技术的虚拟加密货币。
由中本聪在2008年提出,2009年诞生,与其他虚拟货币最大的不同,是其总数量非常有限,具有的稀缺性。
与所有的货币不同,比特币不依靠特定货币机构发行,它依据特定算法,通过大量的计算产生,比特币经济使用整个P2P网络中众多节点构成的分布式燃芹数据库来确认并记录所有则御的交易行为,并使用密码学的设计来确保货币流通各个环节安全性。
手把手教你做一个btc自动交易系统
总结自己零基础用python编写自动交易脚本的方法和经验第一章:成品界面类似如下
基于SpringCloudAlibaba货币交易系统项目
项目简介
开源数字货币交易所,基于Java开发的比特币交易所,包含BTC交易所、ETH交易所、数字货币交易所、交易平台、撮合交易引擎等核心模块。项目技术采用业界最流行、社区耐源源非常活跃的开源组件Spring Cloud Alibaba来构建我们的交易系统,是行业第一家基于Alibaba技术的大型项目,也是Spring Cloud的最佳实践之一。
学习完本项目,大家将对云架构、区块链、法定数字货币、金融科技以及货币发展有自己更深入的认识和理解,为以后20年中国CDBD的研究和发展作出自己的贡献,同时也为争取40w的年薪增加一份可靠的技术保障!
适合对象
在职程序员的自我提升
有Spring Cloud/Spring Cloud Alibaba基础的学员
有Vue/React的基础的学员
有k8s/Docker运维基础的学员
技术选型裂败
Spring Cloud Alibaba + Spring Boot + Tio + Jenkins + Maven + Jetcache + Disruptor + Redis + RocketMQ + Mongodb + Jenkins + Docker + Kubernetes
解昌态决方案
核心功能模块
后台管理系统
前台系统
项目截图
后台管理系统
前台系统
项目架 构
撮合引擎
以上文章内容就是科灵网为大家介绍的比特币合约交易系统源码和比特币合约交易系统源码怎么用的详细回答,希望能够帮助到大家;如果你还想了解更多财经资讯知识,可以收藏我们的网站!
标签: 比特币合约交易系统源码